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We exhibit effect algebras which can be covered by MV-subalgebras. We show that
any effect algebraE which satisfies the Riesz interpolation property (RIP) and the so-
called difference-meet property (DMP) can be covered by blocks, maximal subsets of
mutually strongly compatible elements ofE, which are always MV-subalegbras. This
result generalizes that of Rieˇcanová who proved the same result for lattice-ordered effect
algebras. We show that for effect algebras with only (RIP) the result in question can
fail.

1. INTRODUCTION

Nowadays there exists a whole hierarchy of quantum structures (Dvureˇcenskij
and Pulmannov´a, 2000): quantum logics, orthomodular lattices, orthomodular
posets, orthoalgebras which correspond to two-valued, yes-no, events. In 1994
effect algebras entered quantum structures by Foulis and Bennett (1994) and they
combine both algebraic and fuzzy set ideas of quantum measurement. They corre-
spond to many-valued reasoning of quantum experiments and the most important
example isE(H ), the system of all effect operators, i.e., of all Hermitian operators
A of a Hilbert spaceH such thatO ≤ A ≤ I .

Effect algebras are equivalent to weak orthoalgebras of Giuntini and Greuling
(1989) from 1989 and D-posets introduced by Kˆopka and Chovanec (1994) in 1992.
We recall that a partial algebraE = (E;+, 0, 1) is said to be aneffect algebraif,
for all a, b, c ∈ E,

(EAi) a+ b is defined inE iff b+ a is defined, and in such the casea+ b =
b+ a;

(EAii) a+ b, (a+ b)+ c are defined iffb+ c anda+ (b+ c) are defined, and
in such the case (a+ b)+ c = a+ (b+ c);
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(EAiii) for anya ∈ E, there exists a unique elementa′ ∈ E such thata+ a′ = 1;
(EAiv) if a+ 1 is defined inE, thena = 0.

If we definea ≤ b iff there exists an elementc ∈ E such thata+ c = b,
then≤ is a partial ordering, and we writec := b− a.

For example, if (G, u) is an Abelian unital po-group with a strong unitu, and
if 0(G, u) := {g ∈ G : 0≤ g ≤ u} is endowed with the restriction of the group
addition+, then (0(G, u);+, 0,u) is an effect algebra. An effect algebraE is an
orthoalgebraif a+ a ∈ E entailsa = 0.

MV-algebras entered mathematics by Chang (1958) in 1958.
We recall that an MV-algebrais an algebraM := (M ;⊕,¯,∗ , 0, 1) of type

(2,2,1,0,0) such that, for alla, b, c ∈ M , we have

(MVi) a⊕ b = b⊕ a;
(MVii) (a⊕ b)⊕ c = a⊕ (b⊕ c);
(MViii) a⊕ 0= a;
(MViv) a⊕ 1= 1;
(MVv) (a∗)∗ = a;
(MVvi) a⊕ a∗ = 1;
(MVvii) 0∗ = 1;
(MVviii) (a∗ ⊕ b)∗ ⊕ b = (a⊕ b∗)∗ ⊕ a.

If we define a partial operation+ on M in such a way thata+ b is defined inE
iff a ≤ b∗, thena+ b := a⊕ b, then (M ;+, 0, 1) is an effect algebra.

MV-algebras have appeared in effect algebras in many natural ways: Mundici
(1986) showed that starting from an AF C∗-algebras we can obtain countable MV-
algebras, and conversely, any countable MV-algebra can be derived in such a
way. Bennett and Foulis (1995) introduced8-symmetric effect algebras which are
exactly MV-algebras, and also Boolean D-posets of Chovanec and Kˆopka (1992)
are MV-algebras.

MV-algebras play a similar role in effect algebras as Boolean algebras in or-
thomodular posets—they describe maximal sets of mutually (strongly) compatible
elements. Moreover, Rieˇcanová (2000a) recently proved an important result that
each lattice ordered effect algebra can be covered by MV-subalgebras which form
blocks.

In this paper, we extend this result for effect algebras with the Riesz inter-
polation property (RIP) and with the decomposition-meet property. Such effect
algebras are not necessary lattice-ordered, but every lattice effect algebra satisfies
our conditions.

We recall that Jenˇca studied blocks of mutually compatible elements satis-
fying the Riesz decomposition property. However, such blocks are not necessary
MV-algebras.

Finally, we illustrate our approach by examples.
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2. EFFECT ALGEBRAS WITH THE RIESZ
INTERPOLATION PROPERTY

Let E be an effect algebra. We say thatE satisfies (i) theRiesz interpolation
property, (RIP) for short, if, for allx1, x2, y1, y2 in E, xi ≤ yj for all i , j implies
there exists an elementz ∈ E such thatxi ≤ z≤ yj for all i , j ; (ii) the Riesz
decomposition property, (RDP) for short, ifx ≤ y1+ y2 implies that there exist
two elementsx1, x2 ∈ with x1 ≤ y1 andx2 ≤ y2 such thatx = x1+ x2.

We recall that (1) ifE is a lattice, thenE has trivially (RIP); the converse is not
true as we see below. (2)E has (RDP) iff, (Dvureˇcenskij and Pulmannov´a, 2000;
Lem 1.7.5),x1+ x2 = y1+ y2 implies there exist four elementsc11, c12, c21, c22 ∈
E such thatx1 = c11+ c12, x2 = c21+ c22, y1 = c11+ c21, and y2 = c12+ c22.
(3) (RDP) implies (RIP), but the converse is not true (e.g. ifE = L(H ), thenE is
a complete lattice but without (RDP)).

We recall that a poset (E;≤) is anantilattice if only comparable elements
of E have a supremum (infimum). It is clear that any linearly ordered poset is an
antilattice.

There exists an effect algebra with (RIP) which is not a lattice:

Example 2.1. Let G be the additive groupR2 with the positive cone of all (x, y)
such that eitherx = y = 0 or x > 0 andy > 0. Thenu = (1, 1) is a strong unit
for G. The effect algebraE = 0(G, u) is an antilattice having (RIP) and (RDP)
but E is not a lattice.

Two elementsa andb of an effect algebraE are said to be (i)compatibleand
write a↔ b if there exist three elementsa1, b1, c ∈ E such thata = a1+ c, b =
b1+ c anda1+ b1+ c ∈ E, and (ii)strongly compatibleand we writea

c←→ b
if there are three elementsa1, b1, c ∈ E such thata = a1+ c, b = b1+ c, a1 ∧
b1 = 0 anda1+ b1+ c ∈ E.

We recall that (i) ifa
c←→ b, thena↔ b; (ii) a↔ b (a

c←→ b) implies
b↔ a (b

c←→ a); (iii) 0
c←→ a

c←→ 1; (iv) if a ≤ b, thena
c←→ b, (b = (b−

a)+ a, a = 0+ a).
We show that ifa

c←→ b, then the corresponding elementsa1, b1, c are
uniquely determined inE with (RIP). If a andb are only compatible, there is
possible to find more triples ofa1, b1, c satisfyinga = a1+ c, b = b1+ c and
a1+ b1+ c ∈ E.

Proposition 2.2. Let an effect algebra E satisfy(RIP). If a = a1+ c, b = b1+ c
with a1 ∧ b1 = 0 and a1+ b1+ c ∈ E, then a∧ b = c, a ∨ b = a1+ b1+ c.

Proof: We havec ≤ a, b. If d ≤ a, b, there existsd0 ∈ E such thatc, d ≤ d0 ≤
a, b. Henced0− c ≤ a− c = a1, d0− c ≤ b− c = b1, so thatd0− c ≤ a1 ∧
b1 = 0.
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Putu = a1+ b1+ c. Thenu ≥ a, b. Assumee≥ a, b. There existse0 ∈ E
such thatu, c ≥ e0 ≥ a, b. Thenu− e0 ≤ u− a = b1 andu− e0 ≤ u− b = a1

so thatu− e0 = 0 andu = e0 ≤ e. ¤

The following example is from Rieˇcanová (2000b).

Example 2.3. Let E = {0, a, b, c, d, 1}, where the addition+ is defined in the
table.

Then E is an effect algebra which is not a lattice and without (RIP), but
all elements ofE are strongly compatible and e.g.c

c←→ b andc∨ d ∈ E but
c∧ d 6∈ E.

Proposition 2.4. (1) If a ∨ b ∈ E, then

((a ∨ b)− a) ∧ ((a ∨ b)− b) = 0.

(2) If a ∧ b ∈ E, then

(a− (a ∧ b)) ∧ (b− (a ∧ b)) = 0.

Proof: (1) Let x ≤ (a ∨ b)− a andx ≤ (a ∨ b)− b. Thenx + a ≤ a ∨ b and
x + b ≤ a ∨ b, that isa ≤ (a ∨ b)− x andb ≤ (a ∨ b)− x. Hencea ∨ b ≤ (a ∨
b)− x which yieldsx = 0.

In a similar way we prove (2). ¤

Proposition 2.5. Let a↔ b and a∧ b ∈ E. Then a
c←→ b.
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Proof: Let a = a1+ c andb = b1+ c with a1+ b1+ c ∈ E. Thenc ≤ a ∧ b
anda1 = a− c ≥ a− (a ∧ b) andb1 = b− c ≥ b− (a ∧ b). Therefore, a1 =
a − c = ((a − c) − (a − (a ∧ b)) + (a − (a ∧ b)) = (a ∧ b)− c) + (a−
(a ∧ b)). Similarly b = b− c = ((a ∧ b)− c)+ (b− (a ∧ b)). Hencea = a1+
c = (a− (a ∧ b))+ ((a ∧ b)− c)+ candb = b1+ c= (b− (a ∧ b))+ ((a ∧ b)
− c)+ c, and finally,a1+ b1+ c = (a− (a ∧ b))+ a ∧ b+ (b− (a ∧ b)) ∈ E.
Applying (2) of Proposition 2.4, we havea

c←→ b. ¤

Proposition 2.6. If a ↔ b(a
c←→ b), then a′ ↔ b′(a′

c←→ b′).

Proof: Setu = a1+ b1+ c. Then 1= a1+ b1+ c+ u′ which yields a′1 =
b1+ u′ andb′ = a1+ u′. ¤

Proposition 2.7. Let a↔ b and a∨ b ∈ E. Then a
c←→ b.

Proof: We have (a ∨ b)′ = a′ ∧ b′ ∈ E. Proposition 2.6 and Proposition 2.5
givesa′

c←→ b′, consequently,a
c←→ b. ¤

As a consequence of Proposition 2.5 or Proposition 2.6 we have that in lattice
effect algebras the compatibility and the strong compatibility coincide. We note
that if E does not satisfy (RIP), then the existence of a join (or of a meet) of
strongly compatible elements does not entail the existence of a meet (a join), see
Example 2.3.

Theorem 2.8. Let an effect algebra E satisfy(RIP). The following statements
are equivalent.

(i) a↔ b and a∧ b ∈ E.
(ii) a↔ b and a∨ b ∈ E.

(iii) a
c←→ b.

(iv) a ∨ b, a ∧ b ∈ E and(a ∨ b)− b = a− (a ∧ b).
(v) a ∨ b, a ∧ b ∈ E and(a ∨ b)− a = b− (a ∧ b).

Proof: The equivalence of (i)–(iii) follows from Propositions 2.5 and 2.7.
Assumea

c←→ b. Then by Proposition 2.2,a ∨ b, a ∧ b ∈ E. Hencea ∨ b =
a1+ b1+ c and (a ∨ b)− b = a1 = a− (a ∧ b).

Let (iv) hold. Thena = (a− (a ∧ b))+ (a ∧ b) and b = (b− (a ∧ b)) +
(a ∧ b). Hencea ∨ b = (a− (a ∧ b)) + b = (a− (a ∧ b)) + (b− (a ∧ b)) +
(a ∧ b) ∈ E. Using (2) of Proposition 2.4, we see thata

c←→ b.
The equivalence of (iii) and (v) is similar.¤
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Proposition 2.9. Let an effect algebra E satisfy(RIP). Assume b
c←→ a1,

b
c←→ a2 and a1 ∨ a2 ∈ E. Then b

c←→ (a1 ∨ a2) and

b∧ (a1 ∨ a2) = (b∧ a1) ∨ (a ∧ a2).

Proof: Let a = a1 ∨ a2 ∈ E. By Proposition 2.2,b∧ a1, b∧ a2 ∈ E. We have
b∧ a1, b∧ a2 ≤ a, b. Choose any elementb0 ∈ E such thatb∧ a1, b∧ a2 ≤ b0 ≤
a, b; due to (RIP) such an element exists.

Claim 1. b↔ a.

It is clear thata = (a− b0)+ b0 andb = (b− b0)+ b0. On the other hand,
we haveai ≤ (b− (b∧ ai ))′ ≤ (b− b0)′ so thata ≤ (b− b0)′ which givesE 3
a+ (b− b0) = (a− a0)+ (b− b0)+ b0 ∈ E.

Claim 2. (b− (b∧ a1)) ∧ (b− (b∧ a2)) = b− b0.

It is evident thatb− (b∧ ai ) ≥ b− b0 for i = 1, 2. Letd ≤ b− (b∧ ai ) for
i = 1, 2. By Theorem 2.8.d ≤ b− (b∧ ai ) = (b∨ ai )− ai . Then by Claim 1,
d + ai ≤ b∨ ai ≤ (b− b0)+ a, so thatai ≤ ((b− b0)+ a)− d and a ≤ ((b−
b0)+ a)− d which givesd + a ≤ (b− b0)+ a andd ≤ b− b0.

Claim 3. (b− b0) ∧ (a− b0) = 0.

Assumez≤ b− b0 andz≤ a− a0. Thenz+ b0 ≤ b andz+ b0 ≤ a. More-
over,b∧ ai ≤ z+ b0 ≤ b, a for i = 1, 2. Using Claims 1 and 2 for the element
z+ b0, we haveb− b0 = b− (z+ b0), i.e.,z= 0.

Claim 4. a
c←→ b anda ∨ b, a ∧ b ∈ E.

It follows from Claim 3 and Proposition 2.2.

Claim 5. b∧ (a1 ∨ a2) = (b∧ a1) ∨ (b∧ a2).

It is clear thatb∧ a ≥ b∧ a1, b∧ a2. Assumeb∧ a1, b∧ a2 ≤ y. Thenb∧
a1, b∧ a2 ≤ y, b0 so that there exists an elementy0 ∈ E such thatb∧ ai ≤ y0 ≤
y, b0 for i = 1, 2. Thenb− y0 ≤ b− (b∧ ai ). By Claim 2, we haveb− y0 ≤∧2

i=1(b− (b∧ ai )) = b− b0, so thatb0 ≤ y0 ≤ y which finishes the proof. ¤

Proposition 2.10. Let an effect algebra E satisfy(RIP). Assume b
c←→ a1,

b
c←→ a2 and a1 ∧ a2 ∈ E. Then b

c←→ (a1 ∧ a2), and

b∨ (a1 ∧ a2) = (b∨ a1) ∧ (b∨ a2).
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Proof: Because of Proposition 2.6, we haveb′
c←→ a′i for i = 1, 2, and (a1 ∧

a2)′ = a′1 ∨ a′2 ∈ E. Applying Proposition 2.9, we haveb′
c←→ (a′1 ∨ a′2) so that

b
c←→ (a1 ∧ a2). Henceb′ ∧ (a′1 ∨ a′2) = (b′ ∧ a′1) ∨ (b′ ∧ a′2) which givesb∨

(a1 ∧ a2) = (b∨ a1) ∧ (b∨ a2). ¤

Proposition 2.11. In an antilattice effect algebra E with(RIP) a
c←→ b if and

only if a∧ b ∈ E.

Proof: One direction follows from Proposition 2.2. Assume nowa ∧ b ∈ E.
Then eithera ≤ b or b ≤ a, which gives in the first casea = 0+ a, b =
(b− a)+ a, and similarly for the second case.¤

3. EFFECT ALGEBRAS WITH THE DIFFERENCE-MEET PROPERTY

We say that an effect algebraE satisfies thedifference-meet property, (DMP)
for short, ifx ≤ y, x ∧ z ∈ E andy ∧ z ∈ E imply (y− x) ∧ z ∈ E. For example
every lattice-ordered effect algebra satisfies the difference-meet property. On the
other hand, Example 2.1 gives an example of an antilattice effect algebra with (RIP)
and (RDP) where the differnce-meet property fails. In addition, it can be shown
that there exist two elementsa, b ∈ E such thata

c←→ b, a↔ b′ but a
c
/←→ b′,

andb
c
/←→ b′.

Proposition 3.1. Let an effect algebra E satisfy(RIP) and(DMP).

(i) If a
c←→ b, then a

c←→ b′.
(ii) If a

c←→ b, a
c←→ c and b≤ c, then a

c←→ (c− b).

Proof: (i) Since a
c←→ 1 andb ≤ 1, we havea ∧ b ∈ E, a ∧ 1 ∈ E, (DMP)

entailsa ∧ (1− b) = a ∧ b′ ∈ E. On the other hand, we havea = a1+ c, b =
b1+ c, whereu := a1+ b1+ c ∈ E anda1 ∧ b1 = 0. Then 1= a1+ b1+ c+ u′,
so thatb′ = a1+ u′, i.e.,a↔ b′. Applying Proposition 2.5, we havea

c←→ b′.
(ii) First we show thata↔ (c− b). By Proposition 2.2,a ∧ b, a ∧ c, a ∨

b, a ∨ c ∈ E. Thena ∧ b ≤ a ∧ c, and there exists an elementw ∈ E such that
(a ∧ b)+ w = a ∧ c. Therefore, by Proposition 2.2,a ∨ b = (b− (a ∧ b))+ (a−
(a ∧ b)) + a ∧ b ≤ a ∨ c = (a− (a ∧ c))+ (c− (a ∧ c))+ a ∧ c. Sincea =
(a ∧ b)+ (a− (a ∧ b)) = (a ∧ c)+ (a− (a ∧ c)), we have b− (a ∧ b) ≤ c−
(a ∧ c). There exists another elementv ∈ E such that (b− (a ∧ b))+ v = c−
(a ∧ c). Then c = (c− (a ∧ c))+ a ∧ c = a ∧ b+ w + v + (b− (a ∧ b)) and
c+ (a− (a ∧ c)) = a ∧ c+ w + v + (b− (a ∧ b))+ (a− (a ∧ c)) ∈ E. Hence
c− b = w + v and a = w + [(a ∧ b)+ (a− (a ∧ c))] which concludesa↔
(c− b) while w + v + (a ∧ b)+ (a− (a ∧ c)) ∈ E.
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Applying (DMP), (c− b) ∧ a ∈ E so that by Proposition 2.5, we havea
c←→

(c− b). ¤

A maximal set of mutually strongly compatible elements ofE is said to be a
blockof E. For example, ifE is an MV-algebra, then it is a unique block ofE.

Let {Et }t∈T be a system of effect algebras such thatEt ∩ Es = {0, 1} for
t 6= s. The setE :=⋃t∈T Et can be organized into an effect algebra such that
x + y is defined inE iff x, y ∈ Et for somet ∈ T and ifx + y is defined inEt , in
such a case,x + y taken inE is equal to that taken inEt . ThenE is an effect algebra
which is said to be ahorizontal sumof the system of effect algebras{Et }t∈T .

If E is a horizontal sum of a system of MV-algebras{Et }t∈T , thenE is not
necessary an MV-algebra, and{Et }t∈T is a system of all blocks inE.

Theorem 3.2. Every block of an effect algebra E with(RIP) and (DMP) is an
effect subalgebra of E which is an MV-algebra. Moreover, any such effect algebra
is a set-theoretical union of its blocks.

Proof: Let M be a block ofE. Then 0, 1∈ M . Assumea, b, c ∈ M . By Propo-
sition 3.1,a

c←→ b′ so thatb′ ∈ M . If b+ c ∈ E, we have by Proposition 3.1,
a

c←→ (b′ − c), consequentlya
c←→ (b′ − c)′ = b+ c which proves thatM is

an effect subalgebra ofE. Moreover, ifx, y ∈ M , by Propositions 2.9 and 2.10,
x ∨ y, x ∧ y ∈ M .

In view of (iii) of Theorem 2.8, we have (x ∨ y)− y = x − (x ∧ y) for all
x, y ∈ M which is a necessary and sufficient condition in orderM to be an MV-
algebra.

If A is any subset of mutually strongly compatible elements ofE, due to Zorn’s
lemma there exists a block ofE containingA. In particular, by Proposition 3.1,
the setA = {0, a, a′, 1}(a ∈ E) is a set of mutually strongly compatible elements
of E. This proves thatE is a set-theoretical union of its blocks.¤

Theorem 3.3. Every effect algebra E satisfying(RIP) and (DMP) is a set-
theoretical union of MV-algebras.

Proof: It follows from Theorem 3.2. ¤

If E satisfies only (RIP), then we have the following result:

Theorem 3.4. Every effect algebra E satisfying(RIP) is a set-theoretical union
of blocks which are distributive sublattices of E.
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Proof: Because of Propositions 2.9 and 2.10, each block ofE is a distributive
sublattice ofE, andE is a set-theoretical union of its blocks.¤

We recall that Theorem 3.2 and Theorem 3.3 generalize the result of Rieˇcanová
(2000a) who proved that for lattice-ordered effect algebras. On the other hand,
Example 2.3 gives an effect algebraE whereE is a unique block which however
is not an MV-algebra. Example 2.1 shows that its blocks are not MV-algebras even
if E satisfies (RDP).

Problem. Now we formulate the following problem: Characterize those effect al-
gebras which can be covered by MV-subalgebras. We recall that any lattice-ordered
effect algebra, any effect algebra satisfying (RIP) and (DMP) can be covered by
MV-subalgebras. In addition, any orthomodular poset and any orthoalgebra has
such a covering property (for the later two cases, blocks are precisely Boolean-
algebras).

ACKNOWLEDGMENT

The paper has been supported by the Grant 2/7193/20 SAV, Bratislava,
Slovakia.

REFERENCES

Bennett, M. K. and Foulis, D. J. (1995). Phi-symmetric effect algebras.Found. Phys. 25, 1699–1722.
Chang, C. C. (1958). Algebraic analysis of many valued logics.Transactions of the American Mathe-

matical Society88, 467–490.
Chovanec, F. and Kˆopka, F. (1992). On a representation of observables in D-posets of fuzzy sets,Tatra

Mt. Math. Publ. 1, 19–23.
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