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Effect Algebras Which Can Be Covered
by MV-Algebras

Anatolij Dvure censkij*

Received June 1, 2001

We exhibit effect algebras which can be covered by MV-subalgebras. We show that
any effect algebr& which satisfies the Riesz interpolation property (RIP) and the so-
called difference-meet property (DMP) can be covered by blocks, maximal subsets of
mutually strongly compatible elements Bf which are always MV-subalegbras. This
resultgeneralizes that of Rianowd who proved the same result for lattice-ordered effect
algebras. We show that for effect algebras with only (RIP) the result in question can
fail.

1. INTRODUCTION

Nowadays there exists awhole hierarchy of quantum structures (Eenski]
and Pulmannaa, 2000): quantum logics, orthomodular lattices, orthomodular
posets, orthoalgebras which correspond to two-valued, yes-no, events. In 1994
effect algebras entered quantum structures by Foulis and Bennett (1994) and they
combine both algebraic and fuzzy set ideas of quantum measurement. They corre-
spond to many-valued reasoning of quantum experiments and the most important
example i€ (H), the system of all effect operators, i.e., of all Hermitian operators
A of a Hilbert spaceH suchthatO < A< I.

Effect algebras are equivalent to weak orthoalgebras of Giuntini and Greuling
(1989) from 1989 and D-posets introduced lydka and Chovanec (1994) in 1992.
We recall that a partial algebia = (E; +, 0, 1) is said to be asffect algebraf,
foralla,b,ce E,

(EAI) a+ bis defined inE iff b+ a is defined, and in such the cage+ b =
b+a;

(EAIii) a+ b, (a+ b) + c are defined iffb + c anda + (b + c) are defined, and
in such the casea(+- b) + c=a+ (b + c);

I Mathematical Institute, Slovak Academy of Scien&isfinikova 49, SK-814 73 Bratislava, Slovakia;
e-mail: dvurecen@mat.savba.sk.

221

0020-7748/02/0200-0221/ 2002 Plenum Publishing Corporation



222 Dvuregenskij

(EAiii) foranya € E, there exists a unique elemeite E suchthaa+a = 1;
(EAIv) if a+ 1is defined inE, thena = 0.

If we definea < b iff there exists an elemerd € E such thata+ c = b,
then< is a partial ordering, and we write:= b — a.

For example, if G, u) is an Abelian unital po-group with a strong uajtand
if T'(G,u) :={ge G:0<g<u}is endowed with the restriction of the group
addition+, then (G, u); +, 0,u) is an effect algebra. An effect algebiEais an
orthoalgebraif a + a € E entailsa = 0.

MV-algebras entered mathematics by Chang (1958) in 1958.

We recall that an M\algebrais an algebravl := (M; ®, ©,*, 0, 1) of type
(2,2,1,0,0) such that, for &, b, c € M, we have

(MVi) adb=boa;

(MVii) (a@b)ec=ad (bdoc),
(MVii) a®0=a;

(MViv) a@l1=1;

(MW) (@)* = a;

(Mwvi) aga* =1,

(Mwvii) 0 =1,

(MWwviii) (@a*@b)*@b=(a®b’)" ®a.

If we define a partial operatioft on M in such a way thaa + b is defined inE
iff a < b*, thena+b:=a@ b, then M; +, 0, 1) is an effect algebra.

MV-algebras have appeared in effect algebras in many natural ways: Mundici
(1986) showed that starting from an AF-@lgebras we can obtain countable MV-
algebras, and conversely, any countable MV-algebra can be derived in such a
way. Bennett and Foulis (1995) introduceesymmetric effect algebras which are
exactly MV-algebras, and also Boolean D-posets of Chovanec apa&k(1992)
are MV-algebras.

MV-algebras play a similar role in effect algebras as Boolean algebras in or-
thomodular posets—they describe maximal sets of mutually (strongly) compatible
elements. Moreover, Riahow (2000a) recently proved an important result that
each lattice ordered effect algebra can be covered by MV-subalgebras which form
blocks.

In this paper, we extend this result for effect algebras with the Riesz inter-
polation property (RIP) and with the decomposition-meet property. Such effect
algebras are not necessary lattice-ordered, but every lattice effect algebra satisfies
our conditions.

We recall that Jerd studied blocks of mutually compatible elements satis-
fying the Riesz decomposition property. However, such blocks are not necessary
MV-algebras.

Finally, we illustrate our approach by examples.
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2. EFFECT ALGEBRAS WITH THE RIESZ
INTERPOLATION PROPERTY

Let E be an effect algebra. We say tHasatisfies (i) théRiesz interpolation
property, (RIP) for short, if, for allxy, X2, y1, 2 in E, x; <yj foralli, j implies
there exists an elemenrte E such thatx, <z <y; for all i, j; (ii) the Riesz
decomposition properf{RDP) for short, ifx < y; + y, implies that there exist
two elements, X2 € with x; < y; andx, < y, such thaix = x; + X.

We recallthat (1) i is a lattice, therk has trivially (RIP); the converse is not
true as we see below. (B has (RDP) iff, (Dvureénskij and Pulmannay2000;
Lem1.7.5)x1 + X2 = y1 + Y2 implies there exist four elementsg,, €12, Cp1, C22 €
E such thatx; = ¢33 + €12, Xo = Cp1 + Cpp, Y1 = C11 + Cp1, and Yo = €12 + Cpo.
(3) (RDP) implies (RIP), but the converse is not true (e.g & L(H), thenE is
a complete lattice but without (RDP)).

We recall that a posetH; <) is anantilattice if only comparable elements
of E have a supremum (infimum). It is clear that any linearly ordered poset is an
antilattice.

There exists an effect algebra with (RIP) which is not a lattice:

Example 2.1. Let G be the additive grou? with the positive cone of allx, y)
such that eithek = y =0 orx > 0 andy > 0. Thenu = (1, 1) is a strong unit
for G. The effect algebr& = I'(G, u) is an antilattice having (RIP) and (RDP)
but E is not a lattice.

Two elements andb of an effect algebr& are said to be (ifompatibleand
write a <> b if there exist three elements, by, c € E suchthab =a; +c¢, b=
b; + canda; + by + ¢ € E, and (ii) strongly compatibleand we writea <~<5b
if there are three elements, b;,c € E suchthaa=a; +c,b=b;+c,a A
b = Oanda; + by +ce€ E.

We recall that (i) ifa <— b, thena <> b; (i) a <> b (a < b) implies
b < a(b < a); (i) 0 «— a «<— 1; (iv)if a < b, thena <— b, (b = (b —
a)+a,a=0+a).

We show that ifa «<— b, then the corresponding elemerasg by, ¢ are
uniquely determined irE with (RIP). If a andb are only compatible, there is
possible to find more triples s, by, ¢ satisfyinga = a; + ¢, b =b; + ¢ and
ai+b;+cekE.

Proposition 2.2. Letan effectalgebra E satisfRIP). Ifa=a; +¢c,b=b; + ¢
witha; Aby =0andg +b; +ce E,thenanb=c,avb=a; +b; +c.

Proof: We havec < a, b. If d < a, b, there existsly € E suchthat,d < dy <
a,b. Hencedy—c<a—-c=a;,dg—c<b—-c=bhby, so thatdg—c<a A
b, =0.
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Putu = a; + by +c. Thenu > a, b. Assumee > a, b. There exist®y € E
suchthatu,c> e >a,b. Thenu—g <u—a=bjandu—g<u-—-b=a
sothatu—eg =0andu=eg <e. O

The following example is from Rehow (2000b).

Example 2.3. Let E = {0, a, b, ¢, d, 1}, where the addition- is defined in the
table.

1
+10 a b ¢ d 1
0|0 a b ¢ d 1 c d
ate d ¢ 1 x x
blb ¢ d x 1 x a b
cle 1 X X X X
d|ld x 1 X X X 0
111 xXx X X X X
10 a b ¢ d 1
1 ¢ d a b 0

Then E is an effect algebra which is not a lattice and without (RIP), but
all elements oft are strongly compatible and e.g.<i> b andcvd € E but
cand¢E.

Proposition 2.4. (1)Ifa v b € E, then
(avb)y—a)A((avhb)y—b)=0.
(2)Ifa Ab e E, then
@—-(@asrb)yanb-(asrb)=0.
Proof: (1) Letx <(avb)—aandx <(avhb)—hb. Thenx+a<avband
X+b<avhbthatisa< (avb)—xandb=<(avb)—x.Henceavb=<(av

b) — x which yieldsx = 0.
In a similar way we prove (2). O

Proposition 2.5. Leta<> bandanb e E. Then a<— b.
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Proof; Leta=a;+candb=b;+cwitha;+b;+ce E.Thenc<a A b
anday=a—-c>a—(aAb)yandby=b—-c>b—-(aAb). Therefore, a; =
a—c=((a—-c)—(@a—-(@ab) +(@—-(anb) =(@nb)—c) + (a—
(aAb)). Similaryb=b—-c=(@@aab)—c)+(b—(aab)). Hencea = a; +
c=@—-(@ab)+((anb)—c)+candb=b;+c=(b—-(arb)+((an b
—cC)+c¢,and finally,ag +b;+c=(a—(aAb)+anb+(b—-(anb))ekE.
Applying (2) of Proposition 2.4, we haw <> b. O

Proposition 2.6. If a < b(a <— b), then d < b'(a’ < b).

Proof: Setu=a; +b;+c. Thenl=a; +by+c+u which yields a; =
bi+uvandb =a; +u. O

Proposition 2.7. Leta< bandav b e E. Then a<— b.

Proof: We have évb)y =a A b’ € E. Proposition 2.6 and Proposition 2.5
givesa’ <51, consequenthya <>bh O

As a consequence of Proposition 2.5 or Proposition 2.6 we have that in lattice
effect algebras the compatibility and the strong compatibility coincide. We note
that if E does not satisfy (RIP), then the existence of a join (or of a meet) of
strongly compatible elements does not entail the existence of a meet (a join), see
Example 2.3.

Theorem 2.8. Let an effect algebra E satisfiRIP). The following statements
are equivalent.

(i) a<>bandanbeE.

(i) a<>bandavbeE.

(i) a < b.

(iv) avb,anbe Eand(avb)—b=a—-(aAb).
(v) avb,anbe Eand(avb)—a=b—-(aAb).

Proof: The equivalence of (i)—(iii) follows from Propositions 2.5 and 2.7.
Assumea «— b. Then by Proposition 2.2av b,aAbe E. Henceav b =
a;+b+cand@vb)—b=a=a-(aAb).

Let (iv) hold. Thena=(a—(aAb))+(@Ab) and b=(b—(aAb)) +
(aAb). Henceavb=(a—-(aAb) + b=(a—(anb)) + (b—(anb)) +
(a A b) € E. Using (2) of Proposition 2.4, we see that— b.

The equivalence of (iii) and (v) is similar.O
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Proposition 2.9. Let an effect algebra E satisf(RIP). Assume b= a,
b« ayanda Vv a € E. Then b<— (a; v a) and

bAar(ava)=(bAra)Vv(@naay).

Proof: Leta=a; Vv a; € E. By Proposition 2.2b A a3, b A @, € E. We have
bAa;, bAa <a, b.Chooseanyelemebf € Esuchthab A a;,bAa, <bp <
a, b; due to (RIP) such an element exists.

Claim1l. b« a.

It is clear thata = (a — bg) + bg andb = (b — bg) + bg. On the other hand,
we haveg; < (b—(bA&)) < (b—hy) so thata < (b — bp) which giveskE >
a+(b—-by)=@—ay)+(b—by)+byeE.

Clam2. (b—(bAra))A(b—(baay))=b— b

Itis evidentthab — (b A &) >b—byfori =1,2.Letd <b— (bA &) for
i=1,2. By Theorem 2.8d <b—(bAa)=(bVvag)—a. Then by Claim 1,
d+a <bva < (b—hy)+a, so thata; < (b —by) +a) —d anda < ((b —
bo) + @) — d which givesd + a < (b — bp) + a andd < b — by.

Claim3. (b — bg) A (a—bo) = 0.

Assumez < b — bgandz < a — ag. Thenz + by < bandz + by < a. More-
over,bAa <z+by <b,afori =1, 2. Using Claims 1 and 2 for the element
Z+ bo, we haveb — by = b — (z+ bg), i.e.,z= 0.

Claim4. a< s> bandavb,anbeE.

It follows from Claim 3 and Proposition 2.2.

Claim5. ba(aava)=(bAra)V(bAa).

Itisclearthab Aa > b Aag, bAay. AssumeébAa;,bAaa, <y. Thenb A
a1, b A ay <y, by so that there exists an elemagte E suchthab A g < yp <
y, b fori =1,2. Thenb—yo <b— (b Aa). By Claim 2, we havéh — yp <
/\izzl(b — (bAg)) =b— by, sothathy < yg < y which finishes the proof. O

Proposition 2.10. Let an effect algebra E satisfRIP). Assume B> a,
b« > a,anda A a, € E. Then b<*> (a; A &), and

bv(maa)=(bva)Aa(bva).
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Proof: Because of Proposition 2.6, we have<> a fori =1,2, and & A
a) =a; v & € E. Applying Proposition 2.9, we have < (a1 v &) so that
b <= (ay A @). Henceb' A (a1 vay)= (b Aay) v (b Aa,) which givesb v
(arna)=bva)a(bva). O

Proposition 2.11. In an antilattice effect algebra E wit(RIP) a <> pifand
onlyifanbeE.

Proof: One direction follows from Proposition 2.2. Assume naw b € E.
Then eithera < b or b <a, which gives in the first casa=0+a,b=
(b — a) + a, and similarly for the second caser

3. EFFECT ALGEBRAS WITH THE DIFFERENCE-MEET PROPERTY

We say that an effect algebEasatisfies thelifference-meet propertydMP)
for short, ifx <y,x Aze Eandy Az e Eimply (y — X) A z € E. For example
every lattice-ordered effect algebra satisfies the difference-meet property. On the
other hand, Example 2.1 gives an example of an antilattice effect algebra with (RIP)
and (RDP) where the differnce-meet property fails. In addition, it can be shown
that there exist two elemengs b € E such thag <> ba< b buta <+ b,
andb <+— b'.

Proposition 3.1. Let an effect algebra E satisfiRIP) and (DMP).

(i) Ifa << b, then a<— b
(i) Ifa < b,a <= candb< c, then a<= (c — b).

Proof: (i) Sincea <“s1andb<1, we havearbe E,anleE, (DMP)
entailsa A (1 —b) =aA b’ € E. On the other hand, we hawe=a; +c, b =
b; + c,whereu :=a; + b; + ce Eanda; Ab; =0.Thenl=a; + b; +c+ U,
so thath’ = a3 + U/, i.e.,a <> b'. Applying Proposition 2.5, we hawe «— b
(ii) First we show thata <> (c — b). By Proposition 2.2a Ab,aAc,av
b,avce E. ThenaAb <aAc, and there exists an elemente E such that
(a A b) +w = a A c. Therefore, by Proposition2.2y b = (b — (a A b)) + (a—
(anb) + anb<avc=(@-(aac)+(c—(anc)+anc. Sincea =
(anb)+(@a—(@anb)=(@nrnc)+(@a—-(anc), we haveb—(anb)<c—
(a A €). There exists another elemenk E such thatlp— (aAb))+v=c—
(anc). Thenc=(c—(anc)+arc=aAb+w+v+(b—(anb)) and
c+(@—-(anc)=anc+w+v+(b—-(anb)+(@a-(anc)e E. Hence
c—b=w+v anda=w+[(aAb)+ (a—(aAc))] which concludesa «
(c—b)whilew+v+(@aab)+(a—(anc)) e E.
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Applying (DMP), € — b) A a € E sothat by Proposition 2.5, we haare——>
(c—b). O

A maximal set of mutually strongly compatible elementdoif said to be a
blockof E. For example, ifE is an MV-algebra, then it is a unique block &f

Let {E{}ieT be a system of effect algebras such thain Es = {0, 1} for
t #s. The setkE := [ ;. E: can be organized into an effect algebra such that
X + yis defined inE iff X, y € E; for somet € T and ifx + y is defined inE;, in
suchacase + ytakeninE is equal to thattaken iB;. ThenE is an effect algebra
which is said to be &orizontal sunof the system of effect algebrég; }c.

If E is a horizontal sum of a system of MV-algebifds }ic7, thenE is not
necessary an MV-algebra, af; };ct is a system of all blocks ifk.

Theorem 3.2. Every block of an effect algebra E wi(RIP) and (DMP) is an
effect subalgebra of E which is an MV-algebra. Moreover, any such effect algebra
is a set-theoretical union of its blocks.

Proof: LetM be ablock ofE. Then 0, 1€ M. Assumea, b, c € M. By Propo-
sition 3.1,a <— b so thatb’ € M. If b+ ¢ € E, we have by Proposition 3.1,
a < (b’ — c), consequently <— (b’ — c)’ = b + ¢ which proves thaM is
an effect subalgebra d&. Moreover, ifx, y € M, by Propositions 2.9 and 2.10,
XVY,XAY e M.

In view of (iii) of Theorem 2.8, we havex(vy) —y =x — (X A y) for all
X, ¥ € M which is a necessary and sufficient condition in orifeto be an MV-
algebra.

If Aisany subsetof mutually strongly compatible elements,@fue to Zorn's
lemma there exists a block & containingA. In particular, by Proposition 3.1,
the setA = {0, a, @, 1}(a € E) is a set of mutually strongly compatible elements
of E. This proves thak is a set-theoretical union of its blocksd

Theorem 3.3. Every effect algebra E satisfyind@RIP) and (DMP) is a set-
theoretical union of MV-algebras.

Proof: It follows from Theorem 3.2. O
If E satisfies only (RIP), then we have the following result:

Theorem 3.4. Every effect algebra E satisfyif@IP) is a set-theoretical union
of blocks which are distributive sublattices of E.



Effect Algebras Which can be Covered by MV-Algebras 229

Proof: Because of Propositions 2.9 and 2.10, each block &f a distributive
sublattice ofE, andE is a set-theoretical union of its blocks o

We recallthat Theorem 3.2 and Theorem 3.3 generalize the resultoafiRie
(2000a) who proved that for lattice-ordered effect algebras. On the other hand,
Example 2.3 gives an effect algeldawvhereE is a unique block which however
is not an MV-algebra. Example 2.1 shows that its blocks are not MV-algebras even
if E satisfies (RDP).

Problem. Now we formulate the following problem: Characterize those effect al-
gebras which can be covered by MV-subalgebras. We recall that any lattice-ordered
effect algebra, any effect algebra satisfying (RIP) and (DMP) can be covered by
MV-subalgebras. In addition, any orthomodular poset and any orthoalgebra has
such a covering property (for the later two cases, blocks are precisely Boolean-
algebras).
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